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Friction and convection in a vertically vibrated granular system
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The effect of friction in the thermal convection instability of granular fluids is studied by means of molecular
dynamics simulations. It is found that the transitions between different convective states (zero, one, and two
rolls) are primarily governed by the average energy loss per collisions and not by the friction and restitution

coefficients separately, and can be roughly described in terms of a single effective restitution coefficient. The
average energy loss per collisions, for a fixed value of the restitution coefficient, shows a maximum for a
friction coefficient k=0.3. The presence of this maximum manifests itself as a reentrant behavior in the
transition lines in parameter space when the value of the friction coefficient is increased beyond 0.3.
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I. INTRODUCTION

Convection is often observed in steadily vibrated granular
systems and experiments tend to show that such convection
is related to friction, in particular, friction between the grains
and the side walls [1,2].

A few years ago it was pointed out that besides the well-
known convection induced by friction with the side walls,
thermal convection—similar to the buoyancy driven
Rayleigh-Bénard convection—is also possible [3]. The rea-
son for this phenomenon is that the dissipative collisions in a
granular system agitated from below, inevitably produce a
granular-temperature gradient which may trigger buoyancy
driven convection even if there is no friction anywhere in the
system. In an extreme case it was shown, via molecular dy-
namics with lateral periodic conditions, that convection was
still observed [3]. Subsequently an experimental group ob-
served this buoyancy driven (thermal) convection in a three-
dimensional (3D) highly fluidized granular system [4]. The
experiments were reproduced with 3D molecular dynamic
simulations reasserting the interpretation of the experimental
results [5]. A theory group obtained the same type of con-
vection from a lattice Boltzmann gas calculation [6]. More-
over this type of convection can be obtained from the sim-
plest granular-hydrodynamics equations [7,8] although the
role of noise in a granular system where the number of par-
ticles is relatively small cannot be disregarded [9]. A quite
recent and complete molecular dynamic study is in [10].

In a real system friction is inevitable and there is no doubt
that in most experimental studies until now, friction with the
side walls has been the dominant cause of the observed con-
vection. It would be interesting to understand the experimen-
tal conditions under which friction and buoyancy are compa-
rable or even the buoyancy effects are dominant. It is
reasonable to think, for example, that friction with the walls
becomes of little relevance far from the walls in the case of a
vibrated granular system in a wide box.

In this paper, we present results concerning thermal con-
vection in a two-dimensional system of inelastic hard disks
(THS model) subject to a vibrating base (amplitude A, angu-
lar frequency w) in a box of dimensions L, X L, and with an
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acceleration of gravity g, in which friction is present. As it
will be described in detail, friction contributes to the energy
loss in collisions (as the restitution coefficients do) and there-
fore it affects the granular-temperature (temperature from
now on) profile essential to have buoyancy driven convec-
tion. The collision rule, defined below, depends on the nor-
mal and tangential restitution coefficients r,, and r, and the
static and dynamic friction coefficients «, and «,. Instead of
the restitution coefficients we use the inelasticity coefficients

1-r, 1-r
qt_ 2 ’

(1)

which vanish for elastic collisions.

In our original work we saw that—without friction—
simply varying the inelasticity coefficient g,,, the system goes
from a static state to a one convective roll state and finally to
a state with two convective rolls [3]. In the present study we
look for the transition lines between any of these states in
terms of the inelasticity and friction coefficients while T’
=Aw?/g is kept fixed.

To define the collision rule we consider the collision is
between two disks of mass/radius (m;,R;) and (m,,R,). A
unit vector 72 points from the center to 2 to the center of 1,
while 7 is tangent to the contact (its sign is immaterial). At
collision the points C; and C, come in contact with relative
velocity ». The collision rule for two hard disks with linear
momenta p,, angular velocity @, and reduced mass u
=mymy/ (m+m,) is

.- .. 2AxA
pi'=pi+A 0 =0 - >
mR,
L. - .. 2ixA
P =py-A, 0h=w,- > ()
mR;

where &:Anﬁ+A,f with A, given by
Anzz(l _qn):u“ Vns (3)
while if |v|<[3(1-g,)«,]/(1-g,) v, then
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2
A, = 5(1 —q,)m v, sticking collision rule, 4)

else
A, =sgn(v,) kA, sliding collision rule. (5)

The vectorial nature of the angular velocity is trivial in the
sense that these are vectors perpendicular to the plane of the
movement. The above collision rule was formulated by Jen-
kins and Zhang in a slightly different manner and it corre-
sponds to the standard law of friction (Coulomb’s law) dis-
tinguishing static and dynamic friction except that instead of
taking into consideration the notion of force it is necessary to
consider the instantaneous momentum exchanged [11]. It is
tantamount to saying that the collision is sticking only if
|A,|<k,|A,| while conservation laws do the rest. If the pre-
vious inequality does not hold then |A,|=x,|A,|. Notice that
in both cases A, is proportional to the sign of 7 therefore A f
is independent of that sign.

Even though our system consists of disks of equal mass
and radius we have preferred to write the more general rule
because then it is easy to derive the dissipative collision rule
with a wall. It suffices to make the limit of a disk at rest of
infinite radius and mass.

Section II shows how the average energy loss per particle
depends on the inelasticity and friction coefficients and how
an effective inelasticity coefficient can be defined. In Sec. III
two order parameters are used to characterize the different
convective regimes and, with their help, our different simu-
lational data are described. Transition lines are found in the
k-g plane to separate regions where there is no convection,
one convective roll, two convective rolls, or even collapse. A
summary and conclusions are found in Sec. IV.

II. AVERAGE ENERGY LOSS PER COLLISION

As it has been said, thermal convection takes place be-
cause the energy being pumped through the vibrating base
keeps the grains near the base well agitated while they are
increasingly slower (cooler) at higher altitudes. This implies
a temperature gradient dynamically created by the loss of
energy in every collision.

How sensitive is the convection process to the way the
energy is lost? For example, the inelasticity coefficients can
be set to zero so that all the energy loss is due to friction or,
in the other extreme, the friction coefficients may be set to
zero, tuning the inelasticity coefficients to have the same
average energy loss per collision as before. Would convec-
tion be the same or how different would it be? Furthermore,
can the combined effect of friction and inelasticity be put
together into a single effective inelasticity coefficient?

One can check that in every collision between two disks
of equal mass m the instantaneous energy change dE in a
sticking collision is

dE=_CIn(1 _q”)mvi_QI(l _Qt)myzs (6)
while if there is sliding then

dE=- (1 - qn)[(Qn - 3(1 - Qn)Kzzi)mvi + Kdm|Vt|Vn]- (7)
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FIG. 1. Lines of equal Monte Carlo mean energy loss per colli-
sion (dE) in the k-g plane. Lower lines represent less energy loss.
Top: whole range 0<¢=<0.2. Bottom: Detail for small ¢ values
using logarithmic scale in the « axis. It can be seen that in this
range of g varying « from zero upward with ¢ fixed, the absolute
value of the Monte Carlo mean energy loss increases until k= 0.3
and then [{dE)| decreases again.

As a first step, before tackling the molecular dynamic
study, we have made a simplified evaluation of the mean
energy loss per collision (dE) evaluating the phase-space sta-
tistical mechanics integral which defines such average. With
this aim we have made the rather crude assumption that lo-
cally particles have a Maxwellian distribution and, we have
used the Monte Carlo integration technique [12] to evaluate
the average (dE) using the collision rule of Sec. I.

Since the collision rule does not depend on the energy
scale but only on dimensionless parameters, the temperature
for the Maxwellian distribution has been set equal to unity
without losing generality. The results, in the form of the iso-
(dE) curves are shown in the k-g plane in Fig. 1. For sim-
plicity we have taken equal inelasticity coefficients g=g¢,
=q, and equal friction coefficients k= k,;=k,. In the figure it
is particularly clear that the mean energy loss [(dE)| has a
maximum when «=0.3.

A rough argument to understand the existence of this
maximum follows. The condition determining whether a col-
lision is sliding or sticking says that for low values of x most
collisions are sliding and as the friction coefficient is small,
the energy loss is mainly due to the normal inelasticity coef-
ficient. For large values of «, collisions are mainly sticking
and again the energy loss does not depend on « but only on
the inelasticity coefficients. Therefore, the role of « in the
energy loss manifests itself only for intermediate values of «,
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FIG. 2. The average height Y, of the center of mass of a sys-
tem (in units of particle’s diameters) of inelastic disks as a function
of the friction coefficient x. The minimum is at about x=0.3

and the Monte Carlo mean value shows that it is largest at
k=~=0.3. Furthermore, the absolute value of the instantaneous
energy loss in a sliding collision, given in Eq. (7), regarded
as a function of k, has a maximum at «5*=|v|/[6v,(1
—g,)] which suggests that «;** moves to the right for more
inelastic collisions (larger g) which is what is seen in Fig. 1.
It also gives the correct order of magnitude of the position of
the maximum.

Note that the particular value for the largest energy loss
per collision was obtained by Monte Carlo averaging using
q,=4q,; and k,;=k,. We have checked that changing the rela-
tive values of the inelasticity coefficients does not much af-
fect the position of the maximum, always being close to 0.3,
which is consistent with the previous paragraph.

To further check that k=0.3 corresponds to the largest
energy loss for nearly elastic collisions we performed a se-
ries of molecular dynamic simulations to study the average
height of the center of mass of a granular system excited
from the base, as a function of « keeping the inelasticity
coefficients small and fixed. Figure 2 shows the average
height of the center of mass of a system with N=500 disks of
unit diameter and mass, g=0.002 and stochastically excited
from the base with a thermal base characterized by 7T=1.
The width of the box is L,=25 and there is no ceiling. This is
a narrow box to avoid convection. The inelasticity coeffi-
cients are g,=¢,=0.025 and the particle-particle and particle-
wall friction coefficients « are the same. If the system were
in close packing there would be slightly more than 20 layers
of grains and the height of the center of mass would be about
5V3=8.7. Figure 2 shows that the system becomes more
compactified at k= 0.3, still much looser than close packing.
This is consistent with a maximum energy loss [(dE)| at this
value.

In the case when there is no friction all the energy loss
comes from the value of ¢, and assuming a Maxwellian dis-
tribution the mean energy loss per collision is

<dE> == 4qn(1 - qn)TO (8)

then, for the general case including friction, given the value
of (dE) one can define an effective normal inelasticity coef-
ficient by
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where T=1 is the temperature used in the Maxwellian.

The results shown in Fig. 1 indicate that g.g is monotonic
in ¢ but the dependence on k has a maximum close to «
~0.3.

In Ref. [3] thermal convection was studied in the absence
of friction. The only dissipative coefficient was g, and the
threshold values of ¢, to transit from zero to one roll and
from one to two rolls were found. Since the convective in-
stability is mainly triggered by energy dissipation, it can be
expected that, in the presence of friction, the location of the,
say 0 to I roll transitions, will take place—in the (x,q)
plane—when (dE) takes (roughly) the same characteristic
value. Thresholds, of course, depend on TI'.

In the following section we analyze the molecular dy-
namic behavior of a bidimensional system of hard disks
obeying the collision rule described in the Introduction.

III. SIMULATIONS

We perform molecular dynamic (MD) simulations of in-
elastic hard disks interacting with the collision rule described
by Egs. (2)—(5). The simulational setup consists of N=1000
disks of unit mass and diameter o=1 in a rectangular box of
width L,=600 and height L,=1500. The grains are fluidized
by the movement of the base, which is subject to a vertical
oscillation with amplitude A=0.10 and frequency f=w/2m,
with w=10 [13]. The movement corresponds to a piecewise
constant acceleration that mimics a sinusoidal oscillation. We
choose gravity big enough so that collisions with the upper
wall are rare. Again, for simplicity, we take g=g¢,=¢, and
K= K;=K,; and we use the same inelasticity and friction co-
efficients for grain-grain and grain-wall collisions including
the oscillating base. Going beyond that would be a tremen-
dous task far beyond the scope of the present article.

A. Order parameters

To identify the convection states we define two order pa-
rameters V' and V¥,

N
1
W, =~ v, sin(2mx/L,), (10)
Ni:l
1 N
v, == ITIE vy; cos(2mx/L,), (11)

i=1

where (x;,v,;) are the x-coordinate and y-velocity compo-
nents for particle i. Both order parameters vanish when the
granular fluid is static (no convection has developed). Hav-
ing one convective roll, ¥, is distinctly nonzero and depend-
ing on the position of the locus of the roll, ¥, can be nega-
tive, zero, or positive. W, is positive (negative) if the roll
circulates (counter) clockwise. When two symmetric rolls are
present, W vanishes and V¥, is nonzero, being positive if the
granular fluid goes upward in the middle of the box and
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FIG. 3. Example of the evolution of the order parameters W
and W, when changing « for fixed g=0.015 625 and ¢=0.0. Within
each vertical bin, the value of « is kept fixed and the points corre-
spond to the instantaneous values of the order parameters, taken
every 100 oscillations of the base. Between vertical bins, the value
of k is increased by 0.005, starting from 0.005 and in the last bin
k=0.075.

descends by the lateral walls; otherwise it is negative.

The system is left to evolve for 10° oscillations of the
base before changing any control parameter. The order pa-
rameters are evaluated regularly every 100 oscillations of the
base. This gives a total of 1000 measurements per value of
the control parameter. The first 500 measurements are dis-
carded (possible initial transient) and the next 500 measure-
ments are considered to characterize the state of convection.
After the 10° periods, the control parameter « is slightly
increased starting the new simulation from the final configu-
ration of the previous case. A typical plot of the time evolu-
tion of the order parameters, while increasing the friction
coefficient, is shown in Fig. 3. At first there is a continuous
transition from a conductive (static) regime to a one-roll con-
vective state, showing jumps from clockwise to counter-
clockwise rolls. Higher up in « there is a discontinuous tran-
sition from one to two rolls (W;=0) and back. This transition
exhibits also a region of coexistence between one and two
rolls before the state stabilizes in a two-roll state. Jumps
between the coexisting states (clock/counterclockwise rolls
and one/two rolls) are observed because there is a finite num-
ber of particles.

To precisely identify the average order parameter values,
in the case of the coexistence of two states we plot, for each
value of the control parameter, the last measured 500 points
in the plane (W, WV,) as in Fig. 4. A K-means cluster classi-
fication technique is used to determine the characteristic
mean values that correspond to each state [14]. Figure 4
shows a typical three-cluster graph in the case of coexistence
of a clockwise and counterclockwise one-roll and two-roll
states.

B. Thresholds in the x-q plane

Two series of molecular dynamic simulations were per-
formed, with g=0.002025 (I'=~4938) and with g
=0.015 625 (I'=640) [13], varying « and ¢ in order to iden-
tify the convective transitions already described. In both se-
ries we observed regions in the x-g plane without convective
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FIG. 4. Plot of the order parameter values in the plane (V,V¥5,)
for a condition with coexistence between 1 and 2 rolls: ¢=0.0, «
=0.0605, and g=0.015 62. The top cluster corresponds to two rolls,
and the right and left clusters to one roll, circulating clock or coun-
terclockwise, respectively.

rolls, with one and two rolls or collapsed states (states with a
big upper compact layer on top of a gas-like region). The
states with two rolls always have W, >0, indicating that the
granular fluid goes up in the middle of the box and descends
by the walls. Figure 5 shows the transition lines between
states with zero, one, and two convective rolls. Both graphs
are in the In(k)-¢ plane. The transition lines follow a ten-
dency similar to the iso-(dE) curves. In particular the value
k=0.3 again appears as the value where the energy loss is
the largest. Also, the fact that the energy loss per collision
has a maximum for xk=0.3 produces reentrant transitions,
when increasing the value of «. These results confirm that in
the present case convection is triggered by the energy dissi-
pation which induces buoyancy. The mechanisms which pro-
duce energy loss in every collision do not seem to be rel-
evant.

The second series of simulations—with larger gravity—
has a denser system, hence there is a larger collision rate and
therefore more energy is dissipated per unit time. Hence the
transition lines are seen at lower values for the inelasticity
coefficient. In this case (larger gravity), convection transi-
tions (and collapse) can be observed even at g=0.

Hysteresis is observed in the transition between the states
with one and two rolls, whereas no hysteresis is detected in
the other transitions. The coexisting region is relatively small
in parameter space, but nevertheless it can be easily charac-
terized as observed in Figs. 3 and 4.

Next we study to what extent the transition lines can be
characterized by a single value of (dE). Namely, we put to
test the hypothesis that it is the mean energy loss per colli-
sion and not particular values of ¢ and « which describe the
type of convective state of the system. For every point in the
k-q space—corresponding to each transition line—we have
evaluated (dE). The average of these values, with the corre-
sponding standard deviations, are seen in Table I. The table
shows that for every transition line (considering the low and
high « branches) the values of the mean energy loss per
collision are similar and clearly different from those of the
other lines, except, of course, between the very close lines
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FIG. 5. Convective states displayed in the In x-g parameter
space. Gravity is g=0.002 025 on the top graph and g=0.015 625
on the bottom graph. The labels “0,” “1,” and “2” represent states
with 0, 1, and 2 rolls, respectively, while the label “Collapse” rep-
resents the collapsed state described in the text. Dots are the values
obtained in the simulations and the lines are drawn to help read the
graph. The transition from the states with one and two rolls shows
hysteresis and therefore, there are two associated transition lines,
indicating the beginning and the end of the coexisting region.

associated to hysteresis. The conclusion is that the buoyancy
driven convection states reported here are dominantly deter-
mined by (dE) and hence can be described by an effective
dissipation coefficient gz as in Eq. (9). Hence, at least ap-
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proximately, we can state that convection does not depend on
the dissipation and friction coefficients separately. This ef-
fective description is not completely accurate and the main
source of discrepancy comes from the fact that the velocity
distribution is not Maxwellian [15] and that the translational
and rotational temperatures are typically different [16]. A
more detailed study shows that the transport coefficients, that
are involved in the convection thresholds, depend on the fric-
tion and dissipation coefficient separately [17]. A possible
manifestation of these phenomena is the fact that although
the values (dE)(x,q) within each transition line are similar,
there is a weak dependence on g: to larger values of g cor-
respond slightly smaller values of (dE).

Finally, we stress that we are not stating that the quanti-
tative convective currents are independent of the particle-
wall friction coefficient, but that this phenomenon is driven
by bouyancy and not by the stresses at the walls; thermal
convection exists even without friction. We expect that
changing the particle-wall friction but keeping g.; constant
will somehow quantitatively change the convective phenom-
enon but Fig. 5 shows that the thresholds follow the shapes
seen in Fig. 1.

IV. SUMMARY AND CONCLUSIONS

Using MD simulations of granular fluids with particle-
particle and particle-wall collisions, characterized by inelas-
ticity and friction, we have shown that buoyancy driven con-
vection develops even when inelasticity vanishes. For
different values of the inelasticity coefficient ¢ and the fric-
tion coefficient « it is observed that there are transition lines
(in the k-g plane) from zero to one convective roll, from one
to two rolls (with hysteresis), and from two rolls to collapse.

The study of the statistical mechanics mean energy loss
per collision (dE) assuming a Maxwellian velocity distribu-
tion leads to the conjecture that there are reentrant transitions
in the sense that increasing the friction coefficient « beyond
the value 0.3 there are successive transitions similar to those
observed below x=0.3 but in reverse order. The conjecture
is confirmed by our MD simulations.

The idea that it is possible to give a qualitatively correct
though approximate description of the behavior of the sys-
tem using a unique dissipative coefficient g.; to encompass

TABLE I. Monte Carlo mean energy loss per collision (dE) averaged over all points of a transition line
and the corresponding value of the effective inelasticity coefficient g.s. The transition from one to two rolls
is separated in (a) the beginning of the coexisting region and (b) the end of the coexisting region.

g Transition (dE) ot
0.002025 0-1 -0.090+0.017 0.023+0.004
1-2(a) -0.351+£0.042 0.097+0.013
1-2(b) -0.377+0.046 0.105+0.014
2-collapse -0.614+0.036 0.190+0.014
0.015625 0-1 —-0.047+0.009 0.012+0.002
1-2(a) -0.137+0.022 0.035+0.006
1-2(b) -0.147+0.025 0.038+0.007
2-collapse -0.290+0.037 0.079+0.011
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the combined effect of the inelasticity and friction coeffi-
cients is confirmed both, by the qualitative similarity be-
tween the curves in Figs. 1 and 5, and most importantly, by
the fact that the transitions are quite well characterized by the
value of the mean energy loss (dE) as seen in Table 1. Hence,
defining an effective inelasticity coefficient g is approxi-
mately correct.
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